You are here: Home » Research » Publications Details

Publications of the Department

Gatti, C.; Affronte, M.; Balanov, A.; Bonizzoni, C.; Brida, G.; Chiariello, F.; Chikhi, N.; Coda, G.; D'Elia, A.; Gioacchino, D. Di; Enrico, E.; Eremin, I.; Ernajes, M.; Il'Ichev, E.; Fasolo, L.; Fistul, M.; Ghirri, A.; Greco, A.; Ligi, C.; Maccarone, G.; Meda, A.; Navez, P.; Oelsner, G.; Rajteri, M.; Rettaroli, A.; Ruggiero, B.; Savel'Ev, S.; Silvestrini, P.; Tocci, S.; Ustinov, A.; Vanacore, P.; Zagoskin, A.; Lisitskiy, M., (2023)  - Coherent Quantum Network of Superconducting Qubits as a Highly Sensitive Detector of Microwave Photons for Searching of Galactic Axions  - IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Relazione in Atti di Convegno - Contributo in Atti di convegno (273) (, IEEE Transactions on Applied Superconductivity, ) - pagg. 1 - 5

Abstract: We propose a novel approach to detect a low power microwave signal with a frequency of the order of several GHz based on a coherent collective response of quantum states occurring in a superconducting qubits network (SQN). An SQN composes of a large number of superconducting qubits embedded in a low-dissipative superconducting resonator. Our theory predicts that an SQN interacting with the off-resonance microwave radiation, demonstrates the collective alternating current Stark effect that can be measured even in the limit of single photon counting. A design of the layout of three terminals SQN detectors containing 10 flux qubits weakly coupled to a low-dissipative R-resonator and T-transmission line was developed. The samples were fabricated by Al-based technology with Nb resonator. The SQN detector was tested in terms of microwave measurements of scattering parameters and two-tone spectroscopy. A substantial shift of the frequency position of the transmission coefficient drop induced by a second tone pump signal was observed, and this effect clearly manifests a nonlinear multiphoton interaction between the second-tone microwave pump signal and an array of qubits.