You are here: Home » Research » Publications Details

Publications of the Department


Rademaker, L.; Gibertini, M., (2021)  - Gate-tunable imbalanced Kane-Mele model in encapsulated bilayer jacutingaite  - PHYSICAL REVIEW MATERIALS, Articolo su rivista - Articolo in rivista (262) (, , ) - pagg. 044201 - 044211

Abstract: We study free, capped, and encapsulated bilayer jacutingaite (Pt2HgSe3) from first principles. While the freestanding bilayer is a large-gap trivial insulator, we find that the encapsulated structure has a small trivial gap due to the competition between sublattice symmetry breaking and sublattice-dependent next-nearest-neighbor hopping. Upon the application of a small perpendicular electric field, the encapsulated bilayer undergoes a topological transition towards a quantum spin Hall insulator. We find that this topological transition can be qualitatively understood by modeling the two layers as uncoupled and can be described by an imbalanced Kane-Mele model that takes into account the sublattice imbalance and the corresponding inversion-symmetry breaking in each layer. Within this picture, bilayer jacutingaite undergoes a transition from a 0+0 state, where each layer is trivial, to a 0+1 state, where an unusual topological state relying on Rashba-like spin orbit coupling emerges in only one of the layers.